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Influence of interfacial microcracks on the elastic 
properties of composites 
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A model is established to quantify the influence of interfacial microcracks on the elastic 
properties of a particulate composite using a combination of theoretical and finite element 
analysis. A unique way to construct physical models which could accommodate both crack 
size and crack density is proposed. Based on energy principles, the influence of a dilute 
concentration of interfacial microcracks is first studied. The case of a finite concentration of 
microcracks is solved subsequently by combining the dilute concentration solutions and the 
differential scheme. Both cases agreed well with existing composite theories for the limiting 
condition of complete decohesion. The final model predicts the effective elastic properties as 
functions of both crack size and microcrack density. 

1. Introduction 
Microcracking can occur in ceramic matrix com- 
posites due to applied or residual stresses. These local- 
ized stresses usually arise from the differences in elastic 
modulus or thermal expansion of the constituent 
materials. In general, the formation of microcracks 
damages the integrity of the material, and thus degra- 
dation in properties, such as strength and stiffness, is 
inevitable. Therefore, for the purposes of engineering 
design and tailoring composite properties, it is desir- 
able to establish the relationship between degree of 
microcracking and composites performance. 

The determination of the effective elastic properties 
of cracked materials has attracted substantial atten- 
tion in the fields of both mechanics and materials in 
the past decade. Since Budiansky and O'Conneg [1] 
first presented their classic paper on this topic in 1976, 
numerous variations and approaches have been at- 
tempted [2-11]. A comprehensive review on the 
microcracking of monolithic materials has been given 
by Kachanov [-i2]. Despite the numerous studies on 
this topic, however, analysis of the effective properties 
of microcracked composites are still relatively rare in 
the literature, and most of them pertain to fibre com- 
posites. Even fewer studies are found on the effect of 
a partially debonded fibre matrix interface on the 
composite elastic properties [11, 13-15]. Studies on 
the reduction of stiffness due to partially debonded 
spherical particle/matrix interfaces, to the authors' 
knowledge, do not exist. Apparently, if one wishes to 
assess the integrity of composite materials by evalu- 
ation of the elastic properties, a new model needs to 
be developed. The common feature of the above- 
mentioned analyses, however, is the extremely corn- 

plex, and sometimes intractable, mathematical expres- 
sions. Therefore, further exploration or development 
of similar mathematical treatments was discounted. 
Instead, a numerical approach, namely finite element 
analysis, was adopted to establish a new model. 

The specific objective of this study was to quantify 
the reduction of elastic modulus of an interfacially 
microcracked composite, namely Hexoloy ST*, a 15 
vol % TiB2 particulate reinforced SiC. As the 
thermal expansion coefficient of TiB2 is larger than 
that of SiC, this composite tends to form interracial 
microcracks as a result of the tensile residual stress 
acting radially across the interface. Previous studies 
[16, 17] have shown that Hexoloy ST contains micro- 
cracks at the TiB2/SiC interface and these cracks will 
influence mechanical properties. For convenience, the 
TiB2 particulates will be treated as spherical particles 
and all the constituent materials are considered iso- 
tropic. 

2, The approach 
2.1. The constituents 
An interfacially microcracked composite is considered 
to be composed of two constituents: the "composite 
spheres" and the "'effective medium." Both constitu- 
ents contain the same concentration of TiB2 particles. 
The composite sphere is composed of a TiB2 sphere 
and a concentric SiC layer, with an interracial micro- 
crack of size d? (Fig. 1). The radii a and b are related to 
the volume fractions of TiB2 and SiC. On the other 
hand, the effective medium is a homogenized medium 
that possesses the properties of a non-microcracked 
composite. 
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Figure 1 Schematic of the composite sphere which contains an 
interfacial microcrack. 

A microcracked composite is built up by adding 
composite spheres into the effective medium. As both 
constituents have the same TiB2 concentration, the 
volume fraction of the composite sphere represents the 
fraction of interfacially microcracked TiB2 particles in 
the overall TiB2 population. This fraction will be 
called the "debonded fraction" and denoted by f i n  the 
following text. Thus, with this physical model, both 
the size of the microcracks and the debonded fraction 
are considered. 

2.2. Dilute c o n c e n t r a t i o n  
Consider the two models in Fig. 2. One model (micro- 
cracked) is composed of one composite sphere and the 
effective medium, while the other (non-microcracked) 
contains only the effective medium. When the models 
are subjected to the same stresses, the stored elastic 
strain energy in the microcracked model is less than 
that in the non-microcracked model due to the pres- 
ence of the microcrack. The strain energies in the 
microcracked and non-microcracked models are de- 
noted as U* and Uo, respectively, and they are related 
by: 

U* = Uo - AU (1) 

The difference, AU, is the disturbance in strain energy 
due to the presence of the composite sphere. The 
disturbance can be normalized by the volume of the 
composite sphere: 

AU 
Au - (2) 
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Figure 2 (a) A model composed of one composite sphere and the 
effective medium. (b) A model composed of only the effective me- 
diun l .  

where Au is the disturbance in strain energy caused by 
one unit volume of composite sphere, or the "distur- 
bance density." 

When more composite spheres are added, the total 
strain energy disturbance changes. If only a dilute 
concentration of composite spheres is added, i.e., no 
interactions among the composite spheres, the total 
strain energy disturbance is the summation of indi- 
vidual disturbances. Assume that there are m com- 
posite spheres of crack size (~ evenly distributed and 
randomly oriented in the effective medium (Fig. 3), the 
difference between the microcracked model and the 
non-microcracked model can be written as: 

AUra = m~rc(b3)Au (3) 

where the angle brackets, ( ) ,  are used to represent an 
average value. 
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Figure 3 A model composed of multiple composite spheres and the 
effective medium. 

Assume that identical hydrostatic displacements are 
applied to the two models, shown in Figs 2b and 3. 
The corresponding applied strain is eo. If the volume 
of the model is V and there are m composite spheres in 
the microcracked model, the relationship between the 
two models can be expressed by 

m 

U *  = U 0 - -  2 A U I  (4) 

Rewriting Equation 4 in terms of strain and bulk 
modulus gives: 

i n  

9 K ,  2 9 2 ~,, A Um soY = ~ K o ~ o V -  (5) 

which yields 

21 1 m 
K* = Ko 9E~ ~}-~AUm (6) 

where Ko is the bulk modulus of the effective medium 
and K* is the bulk modulus of the microcracked 
composite. Equation 6, however, has to be trans- 
formed further into an expression dependent on the 
concentration of the composite spheres. To do so, the 
last term of Equation 6 can be rearranged: 

rn 

m<b 3) 2 AUm m 
1 F A U  m = 

V 4_~m(b3 ) = f A u  (7) 

where f is the "debonded fraction," as defined in Sec- 
tion 2.1. Therefore, the bulk modulus of the micro- 
cracked composite is: 

21  
K* = Ko -- ~-~oAuf. (Sa) 

A similar result can be derived for the effective shear 
modulus: 

2 
G* = Go-~'Au"fc~ (8b) 

where G* is the effective shear modulus, Go is the 
shear modulus of the effective medium, and Au' is the 
strain energy disturbance caused by an applied shear 
strain. 

Note that the only unknown variable in Equation 
8 is Au, the disturbance density. Therefore, the key to 
the problem indeed relies on the determination of the 
strain energy disturbance in the presence of one com- 
posite sphere. Because of the complex elastic field near 
an interfacial microcrack, the strain energy has to be 
determined numerically. 

2.3. Finite concentration 
For the case of a finite concentration of composite 
spheres, the interaction among spheres has to be ap- 
proximated. After reviewing the existing modelling 
schemes, the differential scheme was adopted for this 
approximation. The basis idea in this approach is to 
consider the construction of a composite as a sequence 
of operations involving only dilute concentrations of 
composite spheres [18]. As illustrated in Fig. 4, a di- 
lute concentration of composite spheres is first added 
to, the effective medium, and then this composite is 
"homogenized," or recognized as a new (micro- 
cracked) "effective medium." Similar operations can 
subsequently be performed on this effective medium 
until a finite concentration is achieved. 

As the differential scheme involves only a dilute 
concentration of composite spheres in each step of the 
calculations, the previous method for dilute concen- 
trations is still applicable. However, an important 
issue arises from the adoption of the differential 
scheme: the properties of the homogeneous media are 
constantly changing during the iterations. As a result, 
the dilute concentration analysis, which only dealt 
with the effective medium, has to be modified to ac- 
commodate the changing properties of the homogene- 
ous media. 

For each step, it was assumed that the effective bulk 
modulus of a composite is independent of the shear 
modulus of the homogeneous medium. It was further 
assumed that, when a dilute concentration (f<< 1) of 
composite spheres is added into any homogeneous 
medium, the effective bulk modulus (K*) of that com- 
posite can be written as: 

K* = KHM + (A -- BKHM)f  (9) 

w h e r e  KHM is the bulk modulus of the homogeneous 
medium, and A and B are constants to be determined. 
The form of Equation 9 was chosen to mimic the 
universal expression given by Hill [19] : 

~;(2) 

M* = M1 + (M2 - -  M1)--=-c2 (10) 
E 

where M is the stiffness tensor, subscripts 1 and 2 de- 
note the phases, ~(2) is the average strain in phase 2, ~ is 
the homogeneous boundary condition, and c is the 
volume fraction. Obviously, the constants A and B are 
thus, to some extent, implicit expressions of the com- 
plex terms that are used in solutions with the form 
shown in Equation 10. In order to obtain the values of 
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Figure 4 Schematic illustrating the steps in the differential scheme 
approach. 

A and B, the operations shown in the previous section 
were repeated for various bulk moduli of the homo- 
geneous media. The results were then fitted to Equa- 
tion 9 using linear regression to determine A and B. As 
it turned out, the above two assumptions were reason- 
able, as the linear regression always leads to a coeffic- 
ient of determination (r z) of value 1.000, indicatilag an 
excellent fit. 

When the composite spheres are gradually added 
into the homogeneous media, extreme care has to be 
taken in adjusting the relative concentration of the 
constituents. Proper  formulation of the differential 
scheme [20] would give a governing equation for any 
finite concentration of composite spheres in the form: 

dK* 1 
- l _ f ( A  - B K * )  (11) df 

where K* is the effective bulk modulus of the com- 
posite. 

This ordinary differential equation can be solved 
easily. The effective bulk modulus of a composite 
containing a finite concentration of composite spheres 
is therefore: 

K * ( f )  = ~ + K o -  (1 _ f ) B  (12) 

where Ko is the bulk modulus of the starting effective 
medium. 

2.4. The finite element analysis 
Finite element analysis was adopted for the calcu- 
lation of strain energy. A commercial package 
ANSYS t was used. The cross-sections of the two mod- 
els shown in Fig. 2 were built using element type STIF 
83, an 8-node axisymmetric structural solid. The 
meshes, which were generated automatically using the 
ANSYS built-in algorithm, were almost identical ex- 
cept for the difference in separation at the interface. 
Special control was taken near the crack front, where 
large stress gradient exists, to minimize the computa- 
tional error. 

TABLE I The elastic properties used in this study (GPa). Note 
that they are extrapolated values for fully dense materials [20] 

Material Young's Shear Bulk 
modulus modulus  modulus 

SiC 430.2 191.1 191.5 
TiB2 568.8 259.5 234.6 
Hexoloy ST 414.4 186.7 177.5 
Effective medium t 448.6 200.0 197.5 

t Estimated based on self-consistent scheme for a 15 vol % com- 
posite [21]. 

In this study, calculations were performed only for 
the effective bulk modulus. The elastic fields within 
a model were first determined, and then the total 
elastic strain energy was tallied for the body of revol- 
ution based on the cross-section. As Hexoloy ST is the 
candidate composite that contains microcracks, the 
calculations were performed for 15 vol % TiB2 partic- 
ulate reinforced SiC. The properties of the constituent 
materials are summarized in Table 1, where the prop- 
erties of the effective medium were calculated by using 
the self-consistent scheme [21]. 

3. Results and discussion 
3.1. D i l u t e  c o n c e n t r a t i o n  
The calculated results were first compared to existing 
solutions to verify their validity. The only available 
case, however, is the extreme condition that the crack 
size (qb) is 180 ~ i.e., the TiBz particles are totally 
debonded from the SiC matrix. For  convenience, the 
totally debonded TiB2 particles are treated as pores. 
In other words, a composite is considered as a three- 
phase composite: porosity, TiB2 particles, and SiC 
matrix. Subsequently, the elastic properties of 
this three-phase composite could be predicted using 
conventional models such as the self-consistent 
scheme [21]. 

Assume that 1 vol % of the TiB2 particles are totally 
debonded. Therefore, an original 15 vol % TiBz com- 
posite is composed of 0.15 vol % porosity, 14.85 
vol % TiBz particles, and 85 vol % SiC as a matrix. 
The present model predicts a reduction in bulk 
modulus of 0.577 G P a  when compared to a non- 
microcracked composite. The self-consistent scheme 
gives a reduction of 0.581 GPa. Alternatively, one can 
consider the influence of the 0.15 vol % porosity in 
a composite which has a TiB2:SiC ratio of 14.85:85. 
To do this, the modulus of the latter composite was 
first calculated using the self-consistent scheme, and 
then the influence of porosity was accounted for by 
using the exact solution for dilute concentration of 
second phase given by Hashin [22]. Such an approach 
yielded a modulus reduction of 0.568 GPa. It is signifi- 
cant to find that the dilute concentration model pro- 
vides an excellent prediction, which differs less than 
2% from the conventional predictions, thereby 

t ANSYS version 4.4a, Swanson Analysis Systems, Houston, PA 
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corroborating the validity of the dilute concentration 
model. 

For clarity, Equation 8a is rewritten in the following 
form: 

where 

The coefficient D is plotted as a function of crack size 
(4) in Fig. 5. This shows that as a crack grows, it 
becomes more effective in reducing the stiffness of the 
composite. At small crack sizes, the reduction rate 
(Dl$) is low. As the crack propagates along the inter- 
face, the debonded area increases rapidly, which cor- 
responds to the increased reduction rate. Finally, the 
reduction rate decreases and the crack totally separ- 
ates the TiB,/SiC interface for 4 = 180". Although the 
behaviour shown in Fig. 5 is intuitively expected, this 
is the first time that such a relationship has been 
shown quantitatively. 

3.2. Finite concentration 
The constants A and B, determined, from the finite 
element analysis, are listed in Table 11. Substituting 
these values into Equation 12, the effective bulk 
modulus can be written as a simple function of the 
TiB, debonded fraction (f). The effective bulk 
modulus of a 15 vol % composite is plotted as a func- 
tion of debonded fraction for various crack sizes 
(Fig. 6). The effective modulus shows a rather linear 
dependence on the TiB, debonded fraction. 

Similar to the previous section, the results of the 
finite concentration model were compared to limiting 
cases to verify the validity of the model. It was as- 
sumed that the crack size is 180" and the debonded 
fraction is loo%, i.e., all TiB, particles are totally 
debonded. Therefore, the composite was composed of 
15 vol % porosity and 85 vol % Sic. The self-consis- 
tent scheme predicts an effective bulk modulus of 
140.6 GPa. On the other hand, the Hashin-Shtrikman 
upper bound [21] predicts 150.3 GPa. Note that in 
the presence of pores, the Hashin-Shtrikman lower 
bound vanishes as it implies the material becomes 
incoherent. The current finite concentration model 
predicts an effective bulk modulus of 149.1 GPa, 
which is in good agreement with both theoretical 
predictions. In particular, the close results of this 
model and the Hashin-Shtrikman upper bound are 
desired, as these two models have very close resem- 
blance in physical geometry. 

3.3. Implications 
The above results provide an insight on the micro- 
crack density in Hexoloy ST. For example, if all 
microcracks are 60°, the bulk modulus of a totally 
microcracked 15 vol % composite is 183.2 GPa. As the 
measured bulk modulus of Hexoloy ST was 
177.5 GPa [20], the results imply that some micro- 

Crack size (Deg) 

Figure 5 The influence of different crack size (4) on the reduction of 
bulk modulus at dilute concentration. See Equation 13 for the 
definition of D. 

TABLE I1  The constants A and B determined from the finite 
element analysis. See Section 2.3 for the definitions of A and B 

Crack size A (GPa) B 

1 4 0 1  I .  I 
0.0 0.2 0.4 0.6 0.8 1.0 

Debonded fraction ( f )  

Figure 6 The effective bulk modulus of an interfacially micro- 
cracked composite plotted as a function of debonded fraction 
(microcrack density) for various crack sizes. The data is for micro- 
crack sizes of; (U) 30°, (A) 60°, (.) 90", (0) 120°, (+) 150" and (0) 
180". 

cracks must be larger than 60". On the other hand, if 
all microcracks are 90", Fig. 6 predicts that 63 vol % of 
TiB, are debonded. 

One major difficulty encountered in the above as- 
sessment is the determination of actual crack size. As 
the average TiB, particle size in Hexoloy ST is ap- 
proximately 5 pm, the only viable way to observe 
microcracks is conducting transmission electron 
microscopy (TEM). However, TEM observations 
would not provide any quantitative information re- 
garding crack size because the observed image could 



be any cross-section of a particle, not to mention the 
possible damage to the composite during sample prep- 
aration. Therefore further verification of the model 
has to be performed on other composite systems 
where crack size can be easily determined. 

Clearly, the microcracks in a real composite are not 
necessarily of a single size. If one can define the crack 
size distribution, the analyses in the previous sections 
can easily be extended to contain multiple crack sizes. 
Once the disturbance densities (Au) of different crack 
sizes are calculated, the effective bulk modulus (K*) 
can be determined by: 

2 1  
K* = Ko - -  ~E-~(AU0>lg4~l q" /~b/o2V02 -~ . . .  ) f  

(14) 

where the subscripts d~l, qb2, and so on, denote differ- 
ent crack sizes, and V is the fraction of a particular 
crack size in the overall composite sphere population. 
Subsequently, the influence of these cracks at finite 
concentration can be quantified by following the an- 
alysis presented. 

4. Conclusions 
A model is established to quantify the influence of 
interfacial microcracks on the elastic properties of 
a composite using a combination of theoretical study 
and finite element analysis. A unique way to construct 
physical models which could accommodate both 
crack size and crack density was proposed. The case of 
a dilute concentration of microcracks was solved and 
subsequently extended to the case of finite concentra- 
tion by adapting the differential scheme. Both cases 
agreed well with existing composite theories for the 
limiting condition of complete decohesion. The influ- 
ence of crack size and crack density on the reduction 
of effective modulus were examined. In particular, for 
15 vol % TiB2 particulate reinforced SiC composites, 
the effective modulus showed a rather linear depend- 
ence on the TiB2 debonded fraction (crack density). 

With this model, not only can one accurately pre- 
dict the elastic properties of an interfacially micro- 
cracked composite, but also one can use the model to 
assess the severity of microcracking from measured 
elastic properties. Above all, the straightforward ap- 
proach provides a convenient way to construct the 

property-microstructure relationship for other com- 
posite systems. 
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